4.7 Article

VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 95, Issue -, Pages 77-83

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2017.08.046

Keywords

Resveratrol; VDAC1; Acetylation; Silent information regulator of transcription 1; Anoxia/reoxygenation; Cardiomyocytes

Funding

  1. National Natural Science Foundation of China [81460495, 81660601]
  2. Natural Science Foundation of Jiangxi Province [20142BAB215016]

Ask authors/readers for more resources

We have recently demonstrated that Voltage-dependent anion channel 1 (VDAC1), a protein located in the mitochondrial outer membrane, is involved in the effects of resveratrol on the mitochondrial permeability transition pore (mPTP). However, the underlying mechanism of action remains to be elucidated. In the present study, we demonstrated that resveratrol promoted VDAC1 deacetylation in cardiomyocytes in response to anoxia/reoxygenation (A/R) injury. Moreover, silent information regulator of transcription 1 (SIRT1), a NAD(+)-dependent class III histone deacetylase, was up-regulated after pretreatment with resveratrol. Cells that were treated with Ex527, a specific inhibitor of SIRT1, showed a reduction in both SIRT1 expression and VDAC1 deacetylation, indicating that the deacetylation effect of resveratrol on VDAC1 is mediated by SIRT1. Furthermore, the ability deacetylated VDAC1 to bind to Bax was decreased after pretreatment with resveratrol, whereas Bcl-2 expression changed in the opposite direction. As a result, opening of the mPTP was restrained, the mitochondrial membrane potential was reserved, and cytochrome c release was inhibited, which subsequently decreased cardiomyocyte apoptosis. However, the cardioprotective effects observed after treatment of resveratrol could be abrogated by Ex527. In conclusion, resveratrol induces deacetylation of VDAC1 by SIRT1, thereby preventing mitochondria-mediated apoptosis in cardiomyocytes upon A/R injury. (C) 2017 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available