4.5 Review

Subduction initiation in nature and models: A review

Journal

TECTONOPHYSICS
Volume 746, Issue -, Pages 173-198

Publisher

ELSEVIER
DOI: 10.1016/j.tecto.2017.10.014

Keywords

Plate tectonics; Subduction; Lithosphere

Ask authors/readers for more resources

How new subduction zones form is an emerging field of scientific research with important implications for our understanding of lithospheric strength, the driving force of plate tectonics, and Earth's tectonic history. We are making good progress towards understanding how new subduction zones form by combining field studies to identify candidates and reconstruct their timing and magmatic evolution and undertaking numerical modeling (informed by rheological constraints) to test hypotheses. Here, we review the state of the art by combining and comparing results coming from natural observations and numerical models of SI. Two modes of subduction initiation (SI) can be identified in both nature and models, spontaneous and induced. Induced SI occurs when pre-existing plate convergence causes a new subduction zone to form whereas spontaneous SI occurs without pre-existing plate motion when large lateral density contrasts occur across profound lithospheric weaknesses of various origin. We have good natural examples of 3 modes of subduction initiation, one type by induced nucleation of a subduction zone (polarity reversal) and two types of spontaneous nucleation of a subduction zone (transform collapse and plumehead margin collapse). In contrast, two proposed types of subduction initiation are not well supported by natural observations: (induced) transference and (spontaneous) passive margin collapse. Further work is therefore needed to expand on and understand the implications of these observations. Our future advancing understanding of SI will come from better geologic insights, laboratory experiments, and numerical modeling, and with improving communications between these communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available