4.4 Article

Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene

Journal

EPL
Volume 111, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1209/0295-5075/111/67002

Keywords

-

Ask authors/readers for more resources

The effects of surface functionalization on the electronic transport properties of the MXene compound Ti3C2 are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Fluorinated, oxidized and hydroxylated surfaces are considered and the obtained results are compared with the ones for the pristine MXene. It is found that the surface termination has a considerable impact on the electronic transport in MXene. For example, the fluorinated sample shows the largest transmission, whereas surface oxidation results in a considerable reduction of the electronic transmission. The current in the former sample can be up to 4 times larger for a given bias voltage as compared to the case of bare MXene. The increased transmission originates from the extended electronic states and smaller variations of the electrostatic potential profile. Our findings can be useful in designing MXene-based anode materials for energy storage applications, where enhanced electronic transport will be an asset. Copyright (C) EPLA, 2015

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available