4.6 Article

Enhanced Electrochemical Performance of Stable SPES/SPANI Composite Polymer Electrolyte Membranes by Enriched Ionic Nanochannels

Journal

ACS OMEGA
Volume 2, Issue 9, Pages 5831-5839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00687

Keywords

-

Funding

  1. SERB, Department of Science and Technology, New Delhi

Ask authors/readers for more resources

Herein, we present the results of sulfonated polyaniline (SPANI) and sulfonated poly(ether sulfone) (SPES) composite polymer electrolyte membranes. The membranes are established for high-temperature proton conductivity and methanol permeability to render their applicability. Composite membranes have been prepared by modifying the SPES matrix with different concentrations of SPANI (e.g., 1, 2, 5, 10, and 20 wt %). Structural and thermomechanical characterizations have been performed using the transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analyzer techniques. Physicochemical and electrochemical properties have been evaluated by water uptake, ion-exchange capacity, dimensional stability, and proton conductivity. Methanol permeability experiment was carried out to analyze the compatibility of prepared membranes toward direct methanol fuel cell application and found the lowest methanol permeability for PAS-5. Also, the membranes reveal excellent thermal, mechanical, and physicochemical properties for their application toward high-temperature electromembrane processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available