4.6 Article

Chemical Printing of Biological Tissue by Gold Nanoparticle-Assisted Laser Ablation

Journal

ACS OMEGA
Volume 2, Issue 9, Pages 6031-6038

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00385

Keywords

-

Funding

  1. General Research Fund of the Hong Kong Research Grants Council [HKU_17304014]
  2. UGC
  3. University Research Committee of The University of Hong Kong [201511159200, 201611159062]

Ask authors/readers for more resources

A chemical printing method based on gold nanoparticle (AuNP)-assisted laser ablation has been developed. By rastering a thin layer of AuNPs coated on a rat kidney tissue section with a UV laser, biomolecules are extracted and immediately transferred/printed onto a supporting glass substrate. The integrity of the printed sample is preserved, as revealed by imaging mass spectrometric analysis. By studying the mechanism of the extraction/printing process, transiently molten AuNPs were found to be involved in the process, as supported by the color and morphological changes of the AuNP thin film. The success of this molecular printing method was based on the efficient laser-nanomaterial interaction, that is, the strong photoabsorption, laser-induced heating, and phase-transition properties of the AuNPs. It is anticipated that the molecular printing method can be applied to perform site-specific printing, which extracts and transfers biochemicals from different regions of biological tissue sections to different types of supporting materials for subsequent biochemical analysis with the preservation of the original tissue samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available