4.7 Article

Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis

Journal

TALANTA
Volume 167, Issue -, Pages 470-485

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.talanta.2017.02.049

Keywords

Drug analysis; Magnetic molecularly imprinted polymer; Magnetic particles; Magnetic solid-phase extraction; Synthesis of MMIP

Ask authors/readers for more resources

Since the introduction of the molecularly imprinting technology (MTT) in the 1970s, it becomes an emerging technology with the potential for wide-ranging applications in drug determination. With the rise of green chemistry, many researchers began to focus on the application and development of green materials which led to the breakthrough of molecularly imprinted polymers (MIPs) in the green chemistry. Because of the low concentration levels in the human matrices, almost adequate analytical methods should be used for quantification of drugs at the trace levels. In recent years there have been reported benefits of combining MIPs with additional features, e.g. magnetic properties, through the buildup of this type of material on magnetite particles. Magnetic molecularly imprinted polymer (MMIP) is a new material which is composed of magnetic material and non-magnetic polymer material and shares the characteristics of high adsorption capacity to template molecule, special selective recognition ability, and the magnetic adsorption property. These materials have been widely used in the different fields such as chemical, biological and medical science. This review describes the novel configurations and progressive applications of magnetic molecularly imprinted polymers to the drug analysis. Also, the advantages and drawbacks of each methodology, as well as the future expected trends, are evaluated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available