3.8 Review

Aquatic-Derived Biomaterials for a Sustainable Future: A European Opportunity

Journal

RESOURCES-BASEL
Volume 6, Issue 4, Pages -

Publisher

MDPI AG
DOI: 10.3390/resources6040065

Keywords

aquatic environment; biomass valorization; biopolymers; biorefinery; chitin; chitosan; shellfish waste management; sustainable materials

Funding

  1. Polytechnic of Torino [54_RSG17NIR01]

Ask authors/readers for more resources

The valorization of aquatic-derived biowastes as possible feedstock for the production of value-added chemicals and materials is proposed here as a sustainable alternative compared to the exploitation of the more conventional (fossil) resources. In this context, the comprehension of the opportunity related to the valorization of the shellfish industry biowaste for the production of useful materials, especially focusing on chitin and its derived byproducts, is investigated. The large amount of waste produced each year by the shellfish processing industry seems to be an appealing opportunity for the European market to produce valuable products from underutilized waste. In order to highlight this important market-opportunity, the actual European situation concerning the shellfish volume of production is presented. The industrial processes necessary for the recovery of chitin, chitosan, and their derivatives are largely described, together with a wide description of their peculiar (and interesting) physicochemical properties. Even if nowadays the scientific literature suggests that this class of biopolymers is very appealing, further research is still necessary for overcoming some criticisms still present in the extraction and valorization of such substrates. However, the principles of both circular economy and green chemistry encourage the reduction of such biowastes and their exploitation as an alternative resource for a global sustainable future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available