4.7 Article

Wood defects classification using laws texture energy measures and supervised learning approach

Journal

ADVANCED ENGINEERING INFORMATICS
Volume 34, Issue -, Pages 125-135

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2017.09.007

Keywords

Back-propagation neural network; Gray level co-occurrence matrix; Laws texture energy measures; Image processing

Ask authors/readers for more resources

Machine vision based inspection systems are in great focus nowadays for quality control applications. The proposed work presents a novel approach for classification of wood knot defects for an automated inspection. The proposed technique utilizes gray level co-occurrence matrix and laws texture energy measures as texture feature extractors and feed-forward back-propagation neural network as classifier. The proposed work involves the comparison of gray level co-occurrence matrix based features with laws texture energy measures based features. Firstly it takes contrast, correlation, energy and homogeneity as input parameters to a feed-forward back propagation neural network to predict wood defects and then it take energy calculated from laws texture energy measures based energy maps as input feature to a feed-forward back propagation neural network. Mean Square Error (MSE) for training data is found to be 0.0718 and 90.5% overall average classification accuracy is achieved when laws texture energy measures based features are used as input to the neural network as compared to gray level co-occurrence matrix based input features where MSE for training data is found to be 0.10728 and 84.3% overall average classification accuracy is achieved. The proposed technique shows promising results to classify wood defects using a feed forward back-propagation neural network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available