3.8 Proceedings Paper

Development of Low Thermal Conductivity Brick using Rice Husk, Corn Cob and Waste Tea in Clay Brick Manufacturing

Journal

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5010567

Keywords

-

Funding

  1. Universiti Tun Hussein Onn Malaysia [U342]

Ask authors/readers for more resources

The consumption of energy for cooling the indoor environment of buildings in Malaysia is high and mostly related to poor thermal performance of the building envelope. It is evident that reducing energy consumption of buildings has become vital, taking into considerations the limitation of conventional energy resources and the adverse effects associated with the use of such type of energy on the environment. Therefore, selecting the proper thermal properties of a building envelope play a major role in determining the energy consumption patterns and comfort conditions in enclosed spaces. The objective of this study is to investigate the potential application of rice husk (RH), corn cob (CC) and waste tea (WT) as an additive agent in a fired clay brick manufacturing to produce an improved thermal conductivity of final brick product. In the execution of this study, these agricultural wastes were mixed together with clay soil in different percentages, ranging from 0 %, 2.5 %, 5 %, 7.5 % and 10 % by weight. Physical and mechanical properties including soil physical properties, density, shrinkage, water absorption, compressive strength as well as thermal conductivity were measured, reported and discussed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985, MS 76: 1972: Part 2 and ASTM C 518. The results show that RH at 7.5 % is the most effective combination to achieve low thermal conductivity of fired clay brick. This finding suggests that RH waste is a potentially good additive material to be used for thermal properties enhancement of the building envelope.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available