3.8 Article

Scale Formation Under Blended Phosphate Treatment for a Utility With Lead Pipes

Journal

JOURNAL AMERICAN WATER WORKS ASSOCIATION
Volume 109, Issue 11, Pages E464-E478

Publisher

WILEY
DOI: 10.5942/jawwa.2017.109.0121

Keywords

blended phosphate; corrosion scale mineralogy/morphology; galvanized pipe; lead corrosion

Funding

  1. USEPA [CR 83558601]

Ask authors/readers for more resources

US corrosion control practice often assumes that the orthophosphate component of blended phosphate corrosion inhibitors causes the formation of low-solubility lead-orthophosphate solids that control lead release into drinking water. This study identified the solids that formed on the interior surface of a lead service line and a galvanized steel pipe excavated from a system using a proprietary blended phosphate chemical. The scale was analyzed by X-ray diffraction, X-ray fluorescence, and scanning electron microscopy/energy dispersive spectroscopy. Instead of crystalline lead-orthophosphate solids, a porous amorphous layer rich in aluminum, calcium, phosphorus, and lead was observed at the lead pipe scale-water interface. Thus, the mechanism inhibiting lead release into the water was not a thermodynamically predictable passivating lead-orthophosphate scale, but rather an amorphous barrier deposit that was possibly vulnerable to disturbances. Galvanized pipe scales showed relatively crystalline iron and zinc compounds, with additional surface deposition of aluminum, phosphorus, calcium, and lead.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available