4.6 Article

Enhancement of graphene thermoelectric performance through defect engineering

Journal

2D MATERIALS
Volume 4, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/aa57fc

Keywords

graphene; defects; power factor; thermal conductivity; thermoelectric figure of merit

Funding

  1. Murata Science Foundation
  2. MEXT KAKENHI [15H05869]
  3. JSPS KAKENHI [16H04283, 15J12244]
  4. Grants-in-Aid for Scientific Research [15H05869, 15J12244, 16H04283, 16H06504] Funding Source: KAKEN

Ask authors/readers for more resources

Thermoelectric properties of materials are typically evaluated using the figure of merit, ZT, which relies on both the electrical and thermal properties of the materials. Although graphene has a high thermoelectric power factor, its overall ZT value is quite low as it possesses extremely high thermal conductivity. Phonons are the main heat carrier in graphene, and therefore propagation of heat in the material may be modulated by introducing defects into the structure, resulting in reduced thermal conductivity. In this study, we investigate the effect of graphene defect density on the thermoelectric performance of graphene. The defects introduced into graphene by oxygen plasma treatment reduce its Seebeck coefficient as well as its electrical conductivity; as a result, the thermoelectric power factor declines with increasing defect density. However, at higher defect densities, the reduction in thermal conductivity dominates over the reduction in electrical conductivity and, consequently, graphene treated in this way is observed to possess ZT values of up to three times that of pristine graphene. Therefore, it may be concluded that introducing controlled amount of defects into graphene is an effective way of reducing its thermal conductivity, thereby enhancing the performance of graphene-based thermoelectric devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available