4.5 Article

Self-monitoring 'SMART' (RE) Ba2Cu3O7-x conductor via integrated optical fibers

Journal

SUPERCONDUCTOR SCIENCE & TECHNOLOGY
Volume 30, Issue 11, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6668/aa8762

Keywords

quench detection; optical fiber sensors; Rayleigh scattering; REBCO conductor; high temperature superconductor; magnet monitoring; distributed sensing

Ask authors/readers for more resources

A self-monitoring, SMART (RE) Ba2Cu3O7-x (REBCO) conductor has been created by integrating optical fibers into the solder fillet of the current REBCO conductor architecture. By interrogating the integrated optical fiber by Raleigh backscattering, a spectral shift signal as a function of time and position along the conductor is obtained. Due to the direct integration into the solder fillet, intimate, consistent contact between fiber and conductor is obtained, while the optical fiber is protected and does not take up any space in the magnet winding. Therefore, the SMART conductor enhances the benefits of the co-wound fiber approach and provides ultimate sensitivity and practicality. Several samples of SMART REBCO conductor have been manufactured and characterized. The strain self-sensing capabilities have been demonstrated as well as thermal perturbation detection and localization with 2.56mm spatial resolution. Results show that a key feature of the SMART conductor concerns its sensitivity to thermal perturbation; unlike in the case of a coil with co-wound optical fiber, the SMART REBCO sensitivity increases as the temperature decreases. A series of quench measurements have been performed, both on straight samples and on a pancake coil, at temperatures as low as 14.6 K. Using the data collected by the SMART REBCO during quench experiments, the temporal evolution of the size of a normal zone and the instantaneous normal zone propagation velocity have been calculated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available