4.7 Article

Efficient strategies for reliability-based design optimization of variable stiffness composite structures

Journal

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Volume 57, Issue 2, Pages 689-704

Publisher

SPRINGER
DOI: 10.1007/s00158-017-1771-8

Keywords

Decoupled discrete material optimization; Reliability-based design optimization; Sequential optimization and reliability assessment; Variable stiffness composite laminates

Funding

  1. Fundacao para a Ciencia e Tecnologia through the MIT-Portugal program
  2. NSERC Canada Research Chair and Discovery Programs

Ask authors/readers for more resources

This study investigates efficient design optimization frameworks for composite structures with uncertainties related to material properties and loading. The integration of two decoupled reliability-based design optimization methodologies with a decoupled discrete material optimization is proposed to determine material and fiber orientation for three-dimensional composite structures. First, a deterministic and decoupled discrete material optimization is used for baseline comparison. The objective is to minimize the cost of composite structures with the design variables comprising of the piecewise patch orientations and material properties of the fiber reinforced composites. The reliability-based design optimization includes a hybrid method, and also the sequential optimization and reliability assessment method. In the sequential optimization and reliability assessment method, the inverse reliability analysis is evaluated using a stochastic response surface method and a first order reliability approach. Comparing the methods based on the optimal material and fiber orientations, the uncertainties in loads and material properties lead to different optimal layouts compared to the deterministic solutions. The numerical results also reveal that the hybrid method applied in reliability based designs results in negligible additional computational cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available