3.8 Proceedings Paper

Deep Reinforcement Learning for Building HVAC Control

Publisher

IEEE
DOI: 10.1145/3061639.3062224

Keywords

-

Funding

  1. National Science Foundation [CCF-1553757]
  2. Riverside Public Utilities

Ask authors/readers for more resources

Buildings account for nearly 40% of the total energy consumption in the United States, about half of which is used by the HVAC (heating, ventilation, and air conditioning) system. Intelligent scheduling of building HVAC systems has the potential to significantly reduce the energy cost. However, the traditional rule-based and model-based strategies are often inefficient in practice, due to the complexity in building thermal dynamics and heterogeneous environment disturbances. In this work, we develop a data-driven approach that leverages the deep reinforcement learning (DRL) technique, to intelligently learn the effective strategy for operating the building HVAC systems. We evaluate the performance of our DRL algorithm through simulations using the widely-adopted EnergyPlus tool. Experiments demonstrate that our DRL-based algorithm is more effective in energy cost reduction compared with the traditional rule-based approach, while maintaining the room temperature within desired range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available