4.5 Article

Infectious disease prediction with kernel conditional density estimation

Journal

STATISTICS IN MEDICINE
Volume 36, Issue 30, Pages 4908-4929

Publisher

WILEY
DOI: 10.1002/sim.7488

Keywords

copula; dengue fever; infectious disease; influenza; kernel conditional density estimation; prediction

Funding

  1. National Institute of Allergy and Infectious Diseases at the National Institutes of Health [R21AI115173, R01AI102939]

Ask authors/readers for more resources

Creating statistical models that generate accurate predictions of infectious disease incidence is a challenging problem whose solution could benefit public health decision makers. We develop a new approach to this problem using kernel conditional density estimation (KCDE) and copulas. We obtain predictive distributions for incidence in individual weeks using KCDE and tie those distributions together into joint distributions using copulas. This strategy enables us to create predictions for the timing of and incidence in the peak week of the season. Our implementation of KCDE incorporates 2 novel kernel components: a periodic component that captures seasonality in disease incidence and a component that allows for a full parameterization of the bandwidth matrix with discrete variables. We demonstrate via simulation that a fully parameterized bandwidth matrix can be beneficial for estimating conditional densities. We apply the method to predicting dengue fever and influenza and compare to a seasonal autoregressive integrated moving average model and HHH4, a previously published extension to the generalized linear model framework developed for infectious disease incidence. The KCDE outperforms the baseline methods for predictions of dengue incidence in individual weeks. The KCDE also offers more consistent performance than the baseline models for predictions of incidence in the peak week and is comparable to the baseline models on the other prediction targets. Using the periodic kernel function led to better predictions of incidence. Our approach and extensions of it could yield improved predictions for public health decision makers, particularly in diseases with heterogeneous seasonal dynamics such as dengue fever.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available