3.8 Proceedings Paper

Preparation of Polyethersulfone / Graphene Oxide Microcellular Foam Using Supercritical CO2

Publisher

IEEE

Keywords

microcellular foam; graphene oxide; nanocomposite; supercritical CO2; dry ice

Ask authors/readers for more resources

Cell size and cell density heavily influence the properties of polymeric foams and are therefore important to control. By using nanoparticles in polymers and supercritical fluids as foaming agent, it is possible to create microcellular foams with a controlled morphology. In this study, graphene oxide (GO) was synthesized through the oxidization of graphite, and was characterized by XRD and FTIR techniques to confirm the chemical structure of the synthesized GO. Consequently, GO was used as nanoparticle to prepare a polyethersulfone (PES) nanocomposite. Moreover, Dry ice was used as the source of supercritical CO2 in foam production. Microcellular foams were prepared from PES/GO nanocomposites, and scanning electron microscopy (SEM) was used to study cell morphology and the effect that the GO particles had on the morphology of the foams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available