4.7 Article

Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 165, Issue -, Pages 88-93

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2017.02.037

Keywords

Transparent conductive oxide; Thin films; Photovoltaics; Sputtering; Flexible

Funding

  1. S5 (Smart Small Scale Solar Systems) [PON_206_2]

Ask authors/readers for more resources

The increasing interest in thin flexible and bendable devices has led to a strong demand for mechanically robust and electrically reliable transparent electrodes. Indium doped Tin Oxide (ITO) and Aluminium doped Zinc Oxide (AZO) are among the most employed transparent conductive oxides (TCO) and their reliability on flexible substrates have thus received a great attention. However, a high flexibility is usually achieved at very low thickness, which, unfortunately, compromises the electrical conductivity. Here we report the effects of mechanical bending cycles on the electrical and optical properties of ultra thin AZO/Ag/AZO multilayers (45 nm/10 nm/45 nm) and, for comparison, of AZO and ITO single layers whose thickness was, in both cases, 100 nm and 700 nm, deposited at room-temperature on flexible polyethylene naphthalate (PEN) plastic substrates. The electrical stability of the films after several cycles of bending were evaluated by monitoring the relative variation of the electrical resistance with respect to the as prepared sample; the structural damage induced by bending was detected by Scanning Electron Microscopy (SEM). We observed an excellent electrical stability and high flexibility in the AZO/Ag/AZO sample even after 100 cycles, whereas for the single AZO and ITO films the resistivity rapidly increases. The experimental results and numerical simulations provide clear evidences of the key role played by the ductile Ag interlayer that provides improved robustness under mechanical strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available