4.3 Article

Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss

Journal

SOIL SCIENCE AND PLANT NUTRITION
Volume 64, Issue 1, Pages 23-30

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00380768.2017.1409600

Keywords

Multiple aeration; global warming potential; rice; tropical climate; water productivity

Funding

  1. Ministry of Agriculture, Forestry and Fisheries of Japan

Ask authors/readers for more resources

Water regimes play a central role in regulating methane (CH4) and nitrous oxide (N2O) emissions from irrigated rice field. Alternate wetting and drying (AWD) is a possible option, but there is limited information on its feasibility under local environmental conditions, especially for tropical region. We therefore carried out a 3-year experiment in a paddy field in Central Java, Indonesia to investigate the feasibility of AWD in terms of rice productivity, greenhouse gas (GHG) emission, and water use both in wet and dry seasons (WS and DS). The treatments of water management were (1) continuous flooding (CF), (2) flooding every when surface water level naturally declines to 15 cm below the soil surface (AWD), and (3) site-specific AWD with different criteria of soil drying (AWDS) established to find out the optimum for GHG emission reduction. Gas flux measurement was conducted by a static closed chamber method. Rice growth was generally normal and the grain yield did not significantly differ among the three treatments both in WS and DS. AWD and AWDS significantly reduced the total water use (irrigation + rainfall) as compared to CF. As expected, the seasonal total CH4 emission was significantly reduced by AWD and AWDS. On average, the CH4 emissions under AWD and AWDS were 35 and 38%, respectively, smaller than those under CF. It should be noted that AWD and AWDS were effective even in WS due partly to the field location on inland, upland area that facilitates the drainage. The seasonal total N2O emission did not significantly differ among the treatments. The results indicate that AWD is a promising option to reduce GHG emission, as well as water use without sacrificing rice productivity in this field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available