4.6 Article

Dual physically crosslinked double network hydrogels with high toughness and self-healing properties

Journal

SOFT MATTER
Volume 13, Issue 5, Pages 911-920

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sm02567f

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [51273059]
  2. Tribology Science Fund of State Key Laboratory of Tribology of China (Tsinghua University) [SKLTKF14A09]

Ask authors/readers for more resources

Toughness and self-healing properties are desirable characteristics in engineered hydrogels used formany practical applications. However, it is still challenging to develop hydrogels exhibiting both of these attractive properties in a single material. In this work, we present the fabrication of fully physically-linked Agar/PAAc-Fe3+ DN gels. These hydrogels exhibited dual physical crosslinking through a hydrogen bonded crosslinked agar network firstly, and a physically linked PAAc-Fe3+ network via Fe3+ coordination interactions secondly. Due to this dual physical crosslinking, the fabricated Agar/PAAc-Fe3+ DN gels exhibited very favorable mechanical properties (tensile strength 320.7 kPa, work of extension 1520.2 kJ m (3), elongation at break 1130%), fast self-recovery properties in Fe3+ solution (100% recovery within 30min), in 50 degrees C conditions (100% recovery within 15min), and under ambient conditions ( 100% recovery of the initial properties within 60 min), as well as impressive self-healing properties under ambient conditions. All of the data indicate that both the hydrogen bonds in the first network and the ionic coordination interactions in the second network act as reversible sacrificial bonds to dissipate energy, thus conferring high mechanical and recovery properties to the prepared Agar/PAAc-Fe3+ DN gels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available