4.6 Article

Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides

Journal

SOFT MATTER
Volume 13, Issue 2, Pages 345-354

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sm02089e

Keywords

-

Funding

  1. Major Program of the National Natural Science Foundation of China [21334005]

Ask authors/readers for more resources

Smart hydrogel actuators with excellent biocompatibility and biodegradation are extremely desired for biomedical applications. Herein, we have constructed bio-hydrogel actuators inspired by the bilayer structures of plant organs from chitosan and cellulose/carboxymethylcellulose (CMC) solution in an alkali/urea aqueous system containing epichlorohydrin (ECH) as a crosslinker, and demonstrated tight adhesion between two layers through strong electrostatic attraction and chemical crosslinking. The bilayer hydrogels with excellent mechanical properties could carry out rapid, reversible, and repeated self-rolling deformation actuated by pH-triggered swelling/deswelling, and transformed into rings, tubules, and flower-, helix-, bamboo-, and wave-like shapes by effectively designing the geometric shape and size. The significant difference in the swelling behavior between the positively charged chitosan and the negatively charged cellulose/CMC layers generated enough force to actuate the performance of the hydrogels as soft grippers, smart encapsulators, and bioinspired lenses, showing potential applications in a wide range of fields including biomedicine, biomimetic machines, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available