4.8 Article

MOF-Derived Hollow Cage NixCo3-xO4 and Their Synergy with Graphene for Outstanding Supercapacitors

Journal

SMALL
Volume 13, Issue 11, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201603102

Keywords

-

Funding

  1. Academic Research Fund [RGT27/13]
  2. Ministry of Education in Singapore

Ask authors/readers for more resources

Highly optimized nickel cobalt mixed oxide has been derived from zeolite imidazole frameworks. While the pure cobalt oxide gives only 178.7 F g(-1) as the specific capacitance at a current density of 1 A g(-1), the optimized Ni:Co 1:1 has given an extremely high and unprecedented specific capacitance of 1931 F g(-1) at a current density of 1 A g(-1), with a capacitance retention of 69.5% after 5000 cycles in a three electrode test. This optimized Ni:Co 1:1 mixed oxide is further used to make a composite of nickel cobalt mixed oxide/graphene 3D hydrogel for enhancing the electrochemical performance by virtue of a continuous and porous graphene conductive network. The electrode made from GNi:Co 1:1 successfully achieves an even higher specific capacitance of 2870.8 F g(-1) at 1 A g(-1) and also shows a significant improvement in the cyclic stability with 81% capacitance retention after 5000 cycles. An asymmetric supercapacitor is also assembled using a pure graphene 3D hydrogel as the negative electrode and the GNi:Co 1:1 as the positive electrode. With a potential window of 1.5 V and binder free electrodes, the capacitor gives a high specific energy density of 50.2 Wh kg(-1) at a high power density of 750 W kg(-1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available