4.8 Article

3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio

Journal

SMALL
Volume 13, Issue 38, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201701756

Keywords

drop-on-demand; freeze casting; hierarchy of microstructure; inkjet 3D printing; silver nanowire aerogel

Funding

  1. Kansas State University

Ask authors/readers for more resources

Metallic aerogels have attracted intense attention due to their superior properties, such as high electrical conductivity, ultralow densities, and large specific surface area. The preparation of metal aerogels with high efficiency and controllability remains challenge. A 3D freeze assembling printing technique integrated with drop-on-demand inkjet printing and freeze casting are proposed for metallic aerogels preparation. This technique enables tailoring both the macrostructure and microstructure of silver nanowire aerogels (SNWAs) by integrating programmable 3D printing and freeze casting, respectively. The density of the printed SNWAs is controllable, which can be down to 1.3 mg cm(-3). The ultralight SNWAs reach high electrical conductivity of 1.3 S cm(-1) and exhibit excellent compressive resilience under 50% compressive strain. Remarkably, the printing methodology also enables tuning aerogel architectures with designed Poisson's ratio (from negative to positive). Moreover, these aerogel architechtures with tunable Poisson's ratio present highly electromechanical stability under high compressive and tensile strain (both strain up to 20% with fully recovery).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available