4.7 Article

Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 23, Issue 8, Pages 7409-7424

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-015-5989-y

Keywords

Depressional wetlands; Agriculture; Sediment accretion; Radioisotopic dating; Metals; Phosphorus; Eutrophication history

Ask authors/readers for more resources

Glacial kettle holes in young moraine regions receive abundant terrigenous material from their closed catchments. Core chronology and sediment accumulation were determined for two semi-permanent kettle holes, designated RG and KR, on arable land close to the villages of Rittgarten and Kraatz, respectively, in Uckermark, NE Germany. Core dating (Pb-210, Cs-137) revealed variable sediment accretion rates through time (RG 0.4-23.1 mm a(-1); KR 0.2-35.5 mm a(-1)), with periods of high accumulation corresponding to periods of intensive agricultural activity and consequent erosional inputs from catchments. Sediment composition (C, N, P, S, K, Ca, Fe, Mn, Zn, Cu, Mo, Pb, Cd, Zr) was used to determine sediment source and input processes. At RG, annual P input increased from 0.65 kg ha(-1) in the early nineteenth century to 1.67 kg ha(-1) by 2013. At KR, P input increased from 0.6 to 4.1 kg ha(-1) over the last century. There was a concurrent increase in Fe input in both water bodies. Thus, Fe/P ratios showed no temporal trend and did not differ between RG (18.5) and KR (18.4), indicating similar P mobility. At RG, the S/Fe ratio increased from 0.4 to 2.3, indicating more iron sulphides and thus higher P availability, coinciding with high coverage of duckweed (Spirodela polyrhiza (L.)) and soft hornwort (Ceratophyllum submersum L.). At KR, however, this ratio remained low and relatively unchanged (0.3 +/- 0.4), indicating more efficient Fe-P binding and lower hydrophyte productivity. Trends in sediment composition indicate a shift towards eutrophication in both kettle holes, but with differences in timing and magnitude. Other morphologically similar kettle holes in NE Germany that are prone to erosion could have been similarly impacted but may differ in the extent of sediment infilling and degradation of their ecological functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available