4.6 Review

Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species

Journal

SENSORS
Volume 17, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/s17051184

Keywords

molecular techniques; aquatic ecosystems; harmful algae bloom; FISH; sandwich hybridization assay; PCR; lab-on-a-chip; next generation system; isothermal amplification; hybridization chain reaction

Funding

  1. COLCIENCIAS [566-1]
  2. Universidad de Antioquia [566-1]
  3. Max Planck Society [566-1]

Ask authors/readers for more resources

Molecular techniques to detect organisms in aquatic ecosystems are being gradually considered as an attractive alternative to standard laboratory methods. They offer faster and more accurate means of detecting and monitoring species, with respect to their traditional homologues based on culture and microscopic counting. Molecular techniques are particularly attractive when multiple species need to be detected and/or are in very low abundance. This paper reviews molecular techniques based on whole cells, such as microscope-based enumeration and Fluorescence In-Situ Hybridization (FISH) and molecular cell-free formats, such as sandwich hybridization assay (SHA), biosensors, microarrays, quantitative polymerase chain reaction (qPCR) and real time PCR (RT-PCR). Those that combine one or several laboratory functions into a single integrated system (lab-on-a-chip) and techniques that generate a much higher throughput data, such as next-generation systems (NGS), were also reviewed. We also included some other approaches that enhance the performance of molecular techniques. For instance, nano-bioengineered probes and platforms, pre-concentration and magnetic separation systems, and solid-phase hybridization offer highly pre-concentration capabilities. Isothermal amplification and hybridization chain reaction (HCR) improve hybridization and amplification techniques. Finally, we presented a study case of field remote sensing of harmful algal blooms (HABs), the only example of real time monitoring, and close the discussion with future directions and concluding remarks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available