3.8 Review Book Chapter

Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective

These are exciting times for medical image processing. Innovations in deep learning and the increasing availability of large annotated medical image datasets are leading to dramatic advances in automated understanding of medical images. From this perspective, I give a personal view of how computer-aided diagnosis of medical images has evolved and how the latest advances are leading to dramatic improvements today. I discuss the impact of deep learning on automated disease detection and organ and lesion segmentation, with particular attention to applications in diagnostic radiology. I provide some examples of how time-intensive and expensive manual annotation of huge medical image datasets by experts can be sidestepped by using weakly supervised learning from routine clinically generated medical reports. Finally, I identify the remaining knowledge gaps that must be overcome to achieve clinician-level performance of automated medical image processing systems. Computer-aided diagnosis (CAD) in medical imaging has flourished over the past several decades. New advances in computer software and hardware and improved quality of images from scanners have enabled this progress. The main motivations for CAD have been to reduce error and to enable more efficient measurement and interpretation of images. From this perspective, I will describe how deep learning has led to radical changes in how CAD research is conducted and in how well it performs. For brevity, I will include automated disease detection and image processing under the rubric of CAD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available