4.6 Article

The Regular Interaction Pattern among Odorants of the Same Type and Its Application in Odor Intensity Assessment

Journal

SENSORS
Volume 17, Issue 7, Pages -

Publisher

MDPI AG
DOI: 10.3390/s17071624

Keywords

aldehydes; e-nose; esters; odor intensity; vector model

Funding

  1. National Natural Science Foundation of China [51601014]
  2. China Postdoctoral Science Foundation [2016M591070]
  3. National Key Research and Development Program of China [2016YFE0115500]
  4. Fundamental Research Funds for the Central Universities [FRF-TP-15-080A1]

Ask authors/readers for more resources

The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes (n = 12), 0.996 for their binary mixtures (n = 36) and 0.990 for their ternary mixtures (n = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes (n = 15), 0.973 for their binary mixtures (n = 24), and 0.888 for their ternary mixtures (n = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available