4.7 Article

Photolysis degradation of polyaromatic hydrocarbons (PAHs) on surface sandy soil

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 22, Issue 13, Pages 9603-9616

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-015-4082-x

Keywords

Photolysis; UV degradation; Polyaromatic hydrocarbons; Soil; Environmental; Pollution and remediation

Funding

  1. National Strategic Technologies Program (NSTIP) [11-ENV-2660-02]

Ask authors/readers for more resources

Polycyclic aromatic hydrocarbons (PAHs) are potent environmental pollutants, and some of them have been identified as carcinogenic and mutagenic. To advance the knowledge of the environmental fate of PAHs, we systematically investigated the influence of different UV wavelengths irradiation on photolysis of PAHs on sandy soil under tow wavelengths (254 and 306 nm) UV irradiation for six PAHs. In addition, kinetic model and influence of several parameters on PAHs photolysis have been studied. The results obtained indicated that UV radiation with a wavelength of 306 nm was more efficient in the photolysis of the polycyclic aromatic hydrocarbons. Our results showed that fluoranthene (Flt) was the fastest in decomposition, has the greatest value for the coefficient of photolysis (7.4 x 10(-3) h(-1)), and has less half-life, reaching 94 h when using a wavelength of 254 nm. The results indicated that the pyrene (Pyr) was more resistant to photolysis in comparison with indeno(1,2,3-cd) pyrene (IP) and fluoranthene (Flt). The results indicate that photolysis is a successful way to remediate the six studied PAHs compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available