4.5 Review

Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury

Journal

SEMINARS IN IMMUNOLOGY
Volume 29, Issue -, Pages 14-23

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.smim.2017.05.002

Keywords

Biomaterials; Immunology; T cells; Macrophages

Categories

Funding

  1. ACell Inc.
  2. Hartwell Foundation Postdoctoral Fellowship
  3. Center for Proteomics Discovery at the Johns Hopkins University
  4. [S10OD021844]
  5. OFFICE OF THE DIRECTOR, NATIONAL INSTITUTES OF HEALTH [S10OD021844] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Urinary bladder matrix (UBM) is used clinically for management of wounds and reinforcement of surgical soft tissue repair, among other applications. UBM consists of the lamina propria and basal lamina of the porcine urinary bladder, and is decellularized as part of the process to manufacture the medical device. UBM is composed mainly of Collagen I, but also contains a wide variety of fibrillar and basement membrane collagens, glycoproteins, proteoglycans and ECM-associated factors. Upon application of the biomaterial in a traumatic or non traumatic setting in a mouse model, there is a cascade of immune cells that respond to the damaged tissue and biomaterial. Here, through the use of multicolor flow cytometry, we describe the various cells that infiltrate the UBM scaffold in a subcutaneous and volumetric muscle injury model. A wide variety of immune cells are found in the UBM scaffold immune microenvironment (SIM) including F4/80(+) macrophages, CD11c(+) dendritic cells, CD3(+) T cells and CD19(+) B cells. A systemic IL-4 upregulation and a local M2-macrophage response were observed in the proximity of the implanted UBM. The recruitment and activation of these cells is dependent upon signals from the scaffold and communication between the different cell types present.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available