3.8 Proceedings Paper

Transparent Dual Memory Compression Architecture

Publisher

IEEE
DOI: 10.1109/PACT.2017.12

Keywords

memory compression; dual compression technique; OS transparency; locality awareness

Funding

  1. National Research Foundation of Korea [NRF-2016R1A2B4013352]
  2. Institute for Information & communications Technology Promotion [IITP-2017-0-00466]
  3. Ministry of Science, ICT and future Planning (MSIP), Korea
  4. Microsoft Research Asia University Relations

Ask authors/readers for more resources

The increasing memory requirements of big data applications have been driving the precipitous growth of memory capacity in server systems. To maximize the efficiency of external memory, HW-based memory compression techniques have been proposed to increase effective memory capacity. Although such memory compression techniques can improve the memory efficiency significantly, a critical trade-off exists in the HW-based compression techniques. As the memory blocks need to be decompressed as quickly as possible to serve cache misses, latency-optimized techniques apply compression at the cacheline granularity, achieving the decompression latency of less than a few cycles. However, such latency-optimized techniques can lose the potential high compression ratios of capacity-optimized techniques, which compress larger memory blocks with longer latency algorithms. Considering the fundamental trade-off in the memory compression, this paper proposes a transparent dual memory compression (DMC) architecture, which selectively uses two compression algorithms with distinct latency and compression characteristics. Exploiting the locality of memory accesses, the proposed architecture compresses less frequently accessed blocks with a capacity-optimized compression algorithm, while keeping recently accessed blocks compressed with a latency-optimized one. Furthermore, instead of relying on the support from the virtual memory system to locate compressed memory blocks, the study advocates a HW-based translation between the uncompressed address space and compressed physical space. This OS-transparent approach eliminates conflicts between compression efficiency and large page support adopted to reduce TLB misses. The proposed compression architecture is applied to the Hybrid Memory Cube (HMC) with a logic layer under the stacked DRAMs. The experimental results show that the proposed compression architecture provides 54% higher compression ratio than the state-of-the-art latency-optimized technique, with no performance degradation over the baseline system without compression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available