3.8 Proceedings Paper

Neural Adaptive Video Streaming with Pensieve

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3098822.3098843

Keywords

bitrate adaptation; video streaming; reinforcement learning

Funding

  1. NSF [CNS-1617702, CNS-1563826, CNS-1407470]
  2. MIT Center for Wireless Networks and Mobile Computing
  3. Qualcomm Innovation Fellowship

Ask authors/readers for more resources

Client-side video players employ adaptive bitrate (ABR) algorithms to optimize user quality of experience (QoE). Despite the abundance of recently proposed schemes, state-of-the-art ABR algorithms suffer from a key limitation: they use fixed control rules based on simplified or inaccurate models of the deployment environment. As a result, existing schemes inevitably fail to achieve optimal performance across a broad set of network conditions and QoE objectives. We propose Pensieve, a system that generates ABR algorithms using reinforcement learning (RL). Pensieve trains a neural network model that selects bitrates for future video chunks based on observations collected by client video players. Pensieve does not rely on pre-programmed models or assumptions about the environment. Instead, it learns to make ABR decisions solely through observations of the resulting performance of past decisions. As a result, Pensieve automatically learns ABR algorithms that adapt to a wide range of environments and QoE metrics. We compare Pensieve to state-of-theart ABR algorithms using trace-driven and real world experiments spanning a wide variety of network conditions, QoE metrics, and video properties. In all considered scenarios, Pensieve outperforms the best state-of-the-art scheme, with improvements in average QoE of 12%-25%. Pensieve also generalizes well, outperforming existing schemes even on networks for which it was not explicitly trained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available