4.3 Article

Role of microRNA-124 in cardiomyocyte hypertrophy inducedby angiotensin II

Journal

CELLULAR AND MOLECULAR BIOLOGY
Volume 63, Issue 4, Pages 23-27

Publisher

C M B ASSOC
DOI: 10.14715/cmb/2017.63.4.4

Keywords

miR-124; Cardiac hypertrophy; Angiotensin II; ER stress

Funding

  1. Natural Science Foundation [11372204, 11672197]

Ask authors/readers for more resources

Cardiac hypertrophy is a crucial predictor of heart failure and is regulated by microRNAs. MicroRNA-124 (miR-124) is regarded as a prognostic indicator for outcomes after cardiac arrest. However, whether miR-124 participates in cardiac hypertrophy remains unclear. Therefore, our study aimed to determine the role of miR-124 in angiotensin II(AngII)-induced myocardial hypertrophy and the possible mechanism. Primary cultured rat neonatal cardiomyocytes(NCMs) were transfected with miR-124 mimics or inhibitor, followed by AngII stimulation. Quantitative RT-PCR, western blot analysis and determination of cell surface area of NCMs were used to detect the hypertrophic phenotypes. We observed that miR-124 was elevated in AngII-induced hypertrophic cardiomyocytes. Cell surface area of NCMs and mRNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (beta-MHC), indicators of myocardial hypertrophy, were higher in NCMs transfected with miR-124 mimics in the presence of AngII. On the contrary, knockdown of miR-124 by its specific inhibitor could restore these courses. Furthermore, downregulation of miR-124 alleviated the increased protein level of endoplasmic reticulum (ER) stress markers 78-kDa glucose-regulated protein (Grp78) and calreticulin(CRT) in AngII-induced NCMs. In conclusion, our study shows that inhibition of miR-124 effectively suppresses AngII-induced myocardial hypertrophy, which is associated with attenuation of ER stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available