3.8 Proceedings Paper

A Stagewise Refinement Model for Detecting Salient Objects in Images

Journal

Publisher

IEEE
DOI: 10.1109/ICCV.2017.433

Keywords

-

Funding

  1. National Natural Science Foundation of China [61371157, 61472060, 61528101]
  2. Fundamental Research Funds for the Central Universities [DUT2017TB04, DUT17TD03]

Ask authors/readers for more resources

Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To detect and segment salient objects accurately, it is necessary to extract and combine high-level semantic features with low-level fine details simultaneously. This happens to be a challenge for CNNs as repeated subsampling operations such as pooling and convolution lead to a significant decrease in the initial image resolution, which results in loss of spatial details and finer structures. To remedy this problem, here we propose to augment feedforward neural networks with a novel pyramid pooling module and a multi-stage refinement mechanism for saliency detection. First, our deep feedward net is used to generate a coarse prediction map with much detailed structures lost. Then, refinement nets are integrated with local context information to refine the preceding saliency maps generated in the master branch in a stagewise manner. Further, a pyramid pooling module is applied for different-region-based global context aggregation. Empirical evaluations over six benchmark datasets show that our proposed method compares favorably against the state-of-the-art approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available