4.7 Article

Effects of straw and plastic film mulching on greenhouse gas, emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 579, Issue -, Pages 814-824

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2016.11.022

Keywords

Mulching; Greenhouse gas emissions; Wheat-maize rotation field

Funding

  1. National 863 Research Program [2013AA102904]
  2. National Natural Science Foundation of China [41371234, 41371233, 41301305]
  3. Chinese State Key Laboratory Fund [K318009902-1427]
  4. NWAFU Research Project [2013RWYB20]
  5. Chinese Universities Scientific Fund [Z109021422]
  6. 111 Project [B12007]

Ask authors/readers for more resources

Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000 kg ha(-1) wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO2 emission over both cycles, and straw mulching increased soil CH4 absorption over both cycles, but patterns of soil N2O emissions under straw or film mulching are not consistent Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available