4.2 Article

Allicin Decreases Lipopolysaccharide-Induced Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells through Suppression of Mitochondrial Dysfunction and Activation of Nrf2

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 41, Issue 6, Pages 2255-2267

Publisher

KARGER
DOI: 10.1159/000475640

Keywords

Allicin; HUVEC; Atherosclerosis; Mitochondrial dysfunction; Inflammation; Nrf2

Funding

  1. Natural Science Foundation of China (NSFC) [81401870]
  2. Shanghai Municipal Science and Technology Commission [15ZR14512000]

Ask authors/readers for more resources

Background: Allicin, a major component of garlic, is regarded as a cardioprotective agent and is associated with increased endothelial function. Methods: The effects of allicin on lipopolysaccharide (LPS)-induced vascular oxidative stress and inflammation in cultured human umbilical vein endothelial cells (HUVECs) and the mechanisms underlying these effects were studied. The protective effects were measured using cell viability, a lactate dehydrogenase (LDH) assay and cell apoptosis as indicators, and the anti-oxidative activity was determined by measuring reactive oxygen species (ROS) generation, oxidative products and endogenous antioxidant enzyme activities. HUVEC mitochondrial function was assessed by determining mitochondrial membrane potential (MMP) collapse, cytochrome c production and mitochondrial ATP release. To investigate the potential underlying mechanisms, we also measured the expression of dynamic mitochondrial proteins using western blotting. Furthermore, we evaluated the Nrf2 antioxidant signaling pathway using an enzyme-linked immunosorbent assay (ELISA). Results: Our results demonstrated that allicin enhanced HUVEC proliferation, which was suppressed by LPS exposure, and LDH release. Allicin ameliorated LPS-induced apoptosis, suppressed ROS overproduction, reduced lipid peroxidation and decreased the endogenous antioxidant enzyme activities in HUVECs. These protective effects were associated with the inhibition of mitochondrial dysfunction as indicated by decreases in the MMP collapse, cytochrome c synthesis and mitochondrial ATP release. In addition, allicin attenuated the LPS-induced inflammatory responses, including endothelial cell adhesion and TNF-alpha and IL-8 production. Furthermore, allicin increased the expression of LXR alpha in a dose-dependent manner. Allicin-induced attenuation of inflammation was inhibited by LXRa siRNA treatment. Finally, allicin activated NF-E2-related factor 2 (Nrf2), which controls the defense against oxidative stress and inflammation. Conclusions: Taken together, the present data suggest that allicin attenuated the LPS-induced vascular injury process, which may be closely related to the oxidative stress and inflammatory response in HUVECs. Allicin modulated Nrf2 activation and protected the cells against LPS-induced vascular injury. Our findings suggest that allicin attenuated the LPS-induced inflammatory response in blood vessels. (C) 2017 The Author(ds) Published by S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available