4.7 Article

Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 599, Issue -, Pages 1047-1055

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.05.061

Keywords

BC; BrC; Mixing state; Absorption enhancement; Single scattering albedo; Elemental carbon

Funding

  1. National Natural Science Foundation of China [21307067, 21507169, 21190054]
  2. CNEAC [ZD-2015-06]

Ask authors/readers for more resources

Brown carbon (BrC) is increasingly included in climate models as an emerging category of particulate organic compounds that can absorb solar radiation efficiently at specific wavelengths. Water-soluble organic carbon (WSOC) has been commonly used as a surrogate for BrC; however, it only represents a limited fraction of total organic carbon (OC) mass, which could be as low as about 20% in urban atmosphere. Using methanol as the extraction solvent, up to approximately 90% of the OC in Beijing aerosol was isolated and measured for absorption spectra over the ultraviolet-to-visible wavelength range. Compared to methanol-soluble OC (MSOC), WSOC underestimated BrC absorption by about 50% at 365 nm. The mass absorption efficiencies measured for BrC in Beijing aerosol were converted to the imaginary refractive indices of BrC and subsequently used to compute BrC coating-induced enhancement of light absorption (E-abs) by black carbon. E-abs attributed to lensing was reduced in the case of BrC coating relative to that caused by purely-scattering coating. However, this reduction was overwhelmed by the effect of BrC shell absorption, indicating that the overall effect of BrC coating was an increase in E-abs. Methanol extraction significantly reduced charring of OC during thermal-optical analysis, leading to a large increase in the measured elemental carbon (EC) mass and an apparent improvement in the consistency of EC measurements by different thermal-optical methods. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available