4.7 Article

Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 607, Issue -, Pages 483-496

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2017.07.050

Keywords

Coastal area; Combined sewer overflow; E. coli; Enterococci; Wastewater management and treatment; Wastewater treatment plant effluent

Funding

  1. Ferrara University

Ask authors/readers for more resources

The impact of combined sewer overflow (CSO) on the receiving water body is an issue of increasing concern, as it may lead to restrictions in the use and destination of the receiving body, such as bathing or recreational area closures, fish and shellfish consumption restrictions, and contamination of drinking water resources. Recent investigations have mainly referred to the occurrence and loads of suspended solids, organic compounds and, in some cases, micropollutants. Attempts have been made to find correlations between the discharged load and the size and characteristics of the catchment area, climate conditions, rainfall duration and intensity. This study refers to a touristic coastal area in the north-east of Italy, which is characterized by a combined sewer network including 5 CSO outfalls which, in the case of heavy rain events, directly discharge the exceeding water flow rate into channels which, after a short distance, reach the Adriatic Sea. The study analyzed: i) rainfall events during the summer period in 2014 which led to overflow in the different outfalls, ii) the inter-and intra-event variability with regard to E. coli, Enterococci and conductivity, and iii) the hydraulic and pollutant (E. coli and Enterococci) loads discharged by the local wastewater treatment plant and by all the CSO outfalls. Finally, it estimated the contribution of each source to the released hydraulic and pollutant loads into the receiving water body. Moreover, it was also found that the modest water volume discharged by all CSO outfalls (only 8% of the total volume discharged by the area) contains >90% of the microbial load. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available