4.3 Review

Insights into Structure and Reaction Mechanism of β-Mannanases

Journal

CURRENT PROTEIN & PEPTIDE SCIENCE
Volume 19, Issue 1, Pages 34-47

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389203717666161013115724

Keywords

beta-mannanases; TIM barrel; crystal structure; reaction mechanism; degradation; GHs

Funding

  1. Ministry of Human Resource Development, Govt. of India

Ask authors/readers for more resources

beta-mannanases have been shown to play an important role in various biological processes such as the cell wall component degradation, defence signalling in plants, the mobilization of storage reserves and in various industrial processes. To date, glycoside hydrolases (GHs) have been divided into 135 families and 14 clans from A to N based upon their sequence, overall structural fold and function. beta-mannanases belong glycoside hydrolases and exist under four different glycoside hydrolase families, GH5, GH26, GH113 and GH134. GH5 and GH26 are combined in clan GH-A. GH5 and GH26 contain hydrolases which follow the retaining type reaction mechanism. Structural survey of beta-mannanases of GH5 and GH26, suggests that both families contain similar TIM barrel fold. In addition, they also share common catalytic residues and their location in the structure. Despite these structural similarities, a distinct difference lies between the substrate binding sub-sites which define substrate specificity. This review summarizes the recent reports on the structure and function perspectives of beta-mannanases of GH5 and GH26 and highlights the similarities and differences between them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available