4.7 Article

Fluorescence spectroscopy and parallel factor analysis as a dissolved organic monitoring tool to assess treatment performance in drinking water trains

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 584, Issue -, Pages 1212-1220

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2017.01.184

Keywords

Water treatment; Fluorescence spectroscopy; Parallel factor analysis (PARAFAC); Reverse osmosis (RO); Ultrafiltration (UF); Dissolved organic matter (DOM)

Funding

  1. Agenda de Gestio d'Ajuts Universitaris i de Recerca (AGAUR)
  2. Aigues de Barcelona (AB) through the Industrial PhD Program [2013-DI-026]

Ask authors/readers for more resources

Fluorescence excitation emission matrix (FEEM) spectroscopy was used to evaluate its applicability as a tool to track dissolved organic matter (DOM) in a drinking water treatment plant (DWTP) that incorporates a conventional line (consisting in ozonation and GAC filtration) and a membrane-based line (consisting in ultrafiltration, reverse osmosis and mineralization) Working in parallel. Seven sampling points within the different process stages were characterized monthly during 2014. A global Parallel Factor Analysis (PARAFAC) was used to pull out underlying organic fractions from the fluorescence spectra. Accordingly a five components model was selected to describe the system and the pros and cons of the model were discussed by analysis of the residuals. Among the five fluorescent components, those associated to humic-like matter (C1, C3 and C4) showed a similar season variability in the river water feeding the DWTP (which resembled that of UV254 and TOC), whereas the two components associated to protein-like matter (C2 and C5) exhibited a different behavior. The maximum fluorescence intensity values (Fmax) were used to quantify DOM removals across the plant. Compared to the conventional line, water from the UF/RO membrane-based line showed between 6 and 14 times lower fluorescence intensity signal for the humic-like components and between 1 and 3 for the protein-like components as compared to the conventional line. The differences in DOM composition due to seasonal variations and along the treatment trains point out the suitability of using fluorescence measurements over other parameters such as UV254 as a monitoring tool to help optimize operation conditions of each treatment stage and improve produced water quality in a DWFP. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available