4.8 Article

Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2Core/Shell Nanocrystals

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201704288

Keywords

charge transport; core; shell nanoparticles; functional coatings; titanium dioxide

Funding

  1. Syracuse University
  2. National Science Foundation of China [21403260]
  3. NSF MRSEC program [DMR-1120296]

Ask authors/readers for more resources

Inherent poor stability of perovskite nanocrystals (NCs) is the main impediment preventing broad applications of the materials. Here, TiO2 shell coated CsPbBr3 core/shell NCs are synthesized through the encapsulation of colloidal CsPbBr3 NCs with titanium precursor, followed by calcination at 300 degrees C. The nearly monodispersed CsPbBr3/TiO2 core/shell NCs show excellent water stability for at least three months with the size, structure, morphology, and optical properties remaining identical, which represent the most water-stable inorganic shell passivated perovskite NCs reported to date. In addition, TiO2 shell coating can effectively suppress anion exchange and photodegradation, therefore dramatically improving the chemical stability and photostability of the core CsPbBr3 NCs. More importantly, photoluminescence and (photo)electrochemical characterizations exhibit increased charge separation efficiency due to the electrical conductivity of the TiO2 shell, hence leading to an improved photoelectric activity in water. This study opens new possibilities for optoelectronic and photocatalytic applications of perovskites-based NCs in aqueous phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available