4.7 Article

A lariat-derived circular RNA is required for plant development in Arabidopsis

Journal

SCIENCE CHINA-LIFE SCIENCES
Volume 61, Issue 2, Pages 204-213

Publisher

SCIENCE PRESS
DOI: 10.1007/s11427-017-9182-3

Keywords

lariat RNA; circular RNA; intron; flowering time; pleiotropic phenotype

Categories

Funding

  1. National Natural Science Foundation of China [31422029, 31470281, 31671261]
  2. Recruitment Program of Global Experts (China)

Ask authors/readers for more resources

Lariat RNA is produced during pre-mRNA splicing, and it is traditionally thought as by-products, due to the quick turnover by debranching followed by degradation. However, recent findings identified many lariat RNAs accumulate with a circular form in higher eukaryotes. Although the remarkable accumulation, biological consequence of lariat-derived circular RNAs (here we name laciRNAs) remains largely unknown. Here, we report that a specific laciRNA from At5g37720 plays an essential role in plant development by regulating gene expression globally. We focus on 17 laciRNAs with accumulation in wild type plants by circular RNA sequencing in Arabidopsis. To determine biological functions of these laciRNAs, we constructed one pair of transgenic plants for each laciRNA, in which the local gene with or without introns was over-expressed in wild type plants, respectively. By comparing morphological phenotypes and transcriptomic profiles between two classes of transgenic plants, we show that over-expression of the laciRNA derived from the 1st intron of At5g37720 causes pleiotropic phenotypes, including curly and clustered leaf, late flowering, reduced fertility, and accompanied with altered expression of approximately 800 genes. Our results provide another example that a specific plant circular RNA regulates gene expression in a similar manner to that of other non-coding RNAs under physiological conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available