4.8 Article

Resonantly driven CNOT gate for electron spins

Journal

SCIENCE
Volume 359, Issue 6374, Pages 439-442

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aao5965

Keywords

-

Funding

  1. Army Research Office [W911NF-15-1-0149]
  2. Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4535]
  3. NSF [DMR-1409556]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1409556] Funding Source: National Science Foundation

Ask authors/readers for more resources

Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in similar to 200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available