4.8 Article

Quantum liquid droplets in a mixture of Bose-Einstein condensates

Journal

SCIENCE
Volume 359, Issue 6373, Pages 301-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aao5686

Keywords

-

Funding

  1. Fundacio Privada Cellex
  2. European Union [MagQUPT-631633, QUIC-641122]
  3. Spanish Ministerio de Economia y Competitividad (StrongQSIM) [FIS2014-59546-P]
  4. Spanish Ministerio de Economia y Competitividad (Severo Ochoa) [SEV-2015-0522]
  5. Deutsche Forschungsgemeinschaft [FOR2414]
  6. Generalitat de Catalunya [SGR874]
  7. Fundacion BBVA
  8. Mexican Consejo Nacional de Ciencia y Tecnologia [402242/384738]
  9. Spanish Ministerio de Economia y Competitividad [BES-2015-072186]
  10. Marie Sklodowska-Curie actions [TOPDOL-657439]
  11. Ramon y Cajal program [RYC-2015-17890]
  12. Fundacio Privada Cellex
  13. European Union [MagQUPT-631633, QUIC-641122]
  14. Spanish Ministerio de Economia y Competitividad (StrongQSIM) [FIS2014-59546-P]
  15. Spanish Ministerio de Economia y Competitividad (Severo Ochoa) [SEV-2015-0522]
  16. Deutsche Forschungsgemeinschaft [FOR2414]
  17. Generalitat de Catalunya [SGR874]
  18. Fundacion BBVA
  19. Mexican Consejo Nacional de Ciencia y Tecnologia [402242/384738]
  20. Spanish Ministerio de Economia y Competitividad [BES-2015-072186]
  21. Marie Sklodowska-Curie actions [TOPDOL-657439]
  22. Ramon y Cajal program [RYC-2015-17890]

Ask authors/readers for more resources

Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available