4.7 Article

Biodegradable Polymer Nanoparticles for Photodynamic Therapy by Bioluminescence Resonance Energy Transfer

Journal

BIOMACROMOLECULES
Volume 19, Issue 1, Pages 201-208

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.7b01469

Keywords

-

Funding

  1. National Natural Science Foundation of China [61335001, 81771930]
  2. Shenzhen Science and Technology Innovation Commission [JCYJ20170307110157501]

Ask authors/readers for more resources

Conventional photodynamic therapy is severely constrained by the limited light-penetration depth in tissue. Here, we show efficient photodynamic therapy (PDT) mediated by bioluminescence resonance energy transfer (BRET) that overcomes the light-penetration limitation. The photosensitizer Rose Bengal (RB) was loaded in biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles, which were then conjugated with firefly luciferase. Spectroscopic characterizations indicated that BRET effectively activated RB to generate reactive oxygen species (ROS). In vitro studies of the cellular cytotoxicity and photodynamic effect indicated that cancer cells were effectively destroyed by BRET-PDT treatment. In vivo studies in a tumor-bearing mouse model demonstrated that tumor growth was significantly inhibited by BRET-PDT in the absence of external light irradiation. The BRET-mediated phototherapy provides a promising approach to overcome the light-penetration limitation in photodynamic treatment of deep-seated tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available