4.8 Article

Oxidative Degradation of Nalidixic Acid by Nano-magnetite via Fe2+/O2-Mediated Reactions

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 49, Issue 7, Pages 4506-4514

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es505649d

Keywords

-

Funding

  1. XAS measurements on the BM23 ESRF beamline (Grenoble, France)
  2. DIM R2DS IdE Innovations Technologiques [2011-11]
  3. SESAME IdE [1775]

Ask authors/readers for more resources

Organic pollution has become a critical issue worldwide due to the increasing input and persistence of organic compounds in the environment. Iron minerals are potentially able to degrade efficiently organic pollutants sorbed to their surfaces via oxidative or reductive transformation processes. Here, we explored the oxidative capacity of nano-magnetite (Fe3O4) having similar to 12 nm particle size, to promote heterogeneous Fenton-like reactions for the removal of nalidixic acid (NAL), a recalcitrant quinolone antibacterial agent. Results show that NAL was adsorbed at the surface of magnetite and was efficiently degraded under oxic conditions. Nearly 60% of this organic contaminant was eliminated after 30 min exposure to air bubbling in solution in the presence of an excess of nano-magnetite. X-ray diffraction (XRD) and Fe K-edge X-ray absorption spectroscopy (XANES and EXAFS) showed a partial oxidation of magnetite to maghemite during the reaction, and four byproducts of NAL were identified by liquid chromatography-mass spectroscopy (UHPLC-MS/MS). We also provide evidence that hydroxyl radicals (HO center dot) were involved in the oxidative degradation of NAL, as indicated by the quenching of the degradation reaction in the presence of ethanol. This study points out the promising potentialities of mixed valence iron oxides for the treatment of soils and wastewater contaminated by organic pollutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available