4.7 Article

Damage Identification for Hysteretic Structures Using a Mode Decomposition Method

Journal

Publisher

WILEY
DOI: 10.1111/mice.12317

Keywords

-

Funding

  1. New Zealand Earthquake Commission (EQC)
  2. Royal Society of New Zealand
  3. Tertiary Education Commission of New Zealand
  4. MedTech Centre of Research Excellence
  5. New Zealand National Science Challenge: Science for Technological Innovation

Ask authors/readers for more resources

This article investigates structural health monitoring (SHM) of multidegree of freedom (MDOF) structures after major seismic or environmental events. A recently developed hysteresis loop analysis (HLA) SHM technique has performed robustly for single degree of freedom (SDOF) and single mode dominant MDOF structures. However, strong ground motions can trigger higher vibration modes, resulting in irregular hysteresis loops and making this otherwise robust identification difficult. This study presents a new filtering tool, enabling reconstruction of single mode dominant restoring force-displacement loops which can be readily used for HLA. The proposed filtering tool is based on a classic modal decomposition using optimized mode shape coefficients. The optimization process is carried out in a modal space and is based on decoupling frequency response spectra of interfering modes. Application of modal decomposition using the optimized mode shape coefficients allows for reconstruction of single-mode dominant hysteresis loops, which can be effectively identified using HLA. The proposed filtering tool is validated on the reconstruction of hysteresis loops on an experimental bridge pier test structure with notable contributions from at least two modes. The results show the method eliminates the influence of all higher modes that contain significant energy content and yields the reconstruction of smooth single mode dominant hysteresis loops. The resulting SHM analysis on the reconstructed experimental hysteresis loops identified degradation in the elastic stiffness profiles, indicating damage within the structure and matching prior published results based on physical inspection of damage. The overall method presented increases the breadth of potential application of the HLA method and can be readily generalized to a range of MDOF structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available