4.7 Article

Role of smeU1VWU2X Operon in Alleviation of Oxidative Stresses and Occurrence of Sulfamethoxazole-TrimethoprimResistant Mutants in Stenotrophomonas maltophilia

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 62, Issue 2, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02114-17

Keywords

efflux pumps; oxidative stress

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 104-2320-B-010-023-MY3]
  2. Tsuei-Chu Mong Merit Scholarship [30219003]

Ask authors/readers for more resources

Overexpression of resistance-nodulation-division (RND)-type efflux pumps is an important mechanism for bacteria to combat antimicrobials. RND efflux pumps are also critical for bacterial physiology, such as oxidative stress tolerance. Stenotrophomonas maltophilia, a multidrug-resistant opportunistic pathogen, harbors eight RND-type efflux pump operons. Of these, the smeU1VWU2X operon is unique for its possession of two additional genes, smeU1 and smeU2, which encode proteins of the short-chain dehydrogenase/ reductase (SDR) family. Overexpression of the SmeVWX pump is known to contribute to the acquired resistance to chloramphenicol, quinolone, and tetracycline; however, SmeU1 and SmeU2 are little involved in this phenotype. In the study described in this article, we further linked the smeU1VWU2X operon to oxidative stress alleviation and sulfamethoxazole-trimethoprim (SXT)resistant mutant occurrence. The smeU1VWU2X operon was inducibly expressed upon challenge with menadione (MD), plumbagin (PL), and hydrogen peroxide (H2O2), as verified by the use of the chromosomal smeU1VWU2X-xylE transcriptional fusion construct and quantitative real-time PCR (qRT-PCR). The MD-mediated smeU1VWU2X upexpression was totally dependent on SoxR and partially relied on SmeRv but was less relevant to OxyR. SmeRv, but not SoxR and OxyR, played a regulatory role in the H2O2-mediated smeU1VWU2X upexpression. The significance of smeU1VWU2X upexpression was investigated with respect to oxidative stress alleviation and SXTresistant mutant occurrence. Overexpression of the smeU1VWU2X operon contributed to the alleviation of MD-mediated oxidative stress. Of the encoded proteins, the SmeVWX pump and SmeU2, rather than SmeU1, participated in MD tolerance. Furthermore, we also demonstrated that the MD-mediated expression of the smeU1VWU2X operon decreased the SXT resistance frequency when S. maltophilia was grown in a reactive oxygen species (ROS)-rich environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available