4.8 Article

Passivated Perovskite Crystallization via g-C3N4 for High-Performance Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 7, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201705875

Keywords

perovskite crystallization; perovskite solar cells; passivation

Funding

  1. National Key R&D Program of China [2016YFA0202400]
  2. Natural Science Foundation of China [61674109]
  3. Natural Science Foundation of Jiangsu Province [BK20170059]
  4. Collaborative Innovation Center of Suzhou Nano Science and Technology
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high-performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution-processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g-C3N4) into the perovskite layer. The addition of g-C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g-C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light-absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available