4.4 Article

Expanding the Scope of Single- and Double-Noncanonical Amino Acid Mutagenesis in Mammalian Cells Using Orthogonal Polyspecific Leucyl-tRNA Synthetases

Journal

BIOCHEMISTRY
Volume 57, Issue 4, Pages 441-445

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.7b00952

Keywords

-

Funding

  1. Department of Chemistry of Boston College
  2. National Institutes of Health Grant [R01GM124319]

Ask authors/readers for more resources

Engineered aminoacyl-tRNA synthetase/tRNA pairs that enable site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in living cells have emerged as powerful tools in chemical biology. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair is a promising candidate for ncAA mutagenesis in mammalian cells, but it has been engineered to charge only a limited set of ncAAs so far. Here we show that two highly polyspecific EcLeuRS mutants can efficiently charge a large array of useful ncAAs into proteins expressed in mammalian cells, while discriminating against the 20 canonical amino acids. When combined with an opal-suppressing pyrrolysyl pair, these EcLeuRS variants further enabled site-specific incorporation of different combinations of two distinct ncAAs into proteins expressed in mammalian cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available