4.7 Article

Self-organization in a bimotility mixture of model microswimmers

Journal

PHYSICAL REVIEW E
Volume 97, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.97.020401

Keywords

-

Ask authors/readers for more resources

We study the cooperation and segregation dynamics in a bimotility mixture of microorganisms which swim at low Reynolds numbers via periodic deformations along the body. We employ a multiparticle collision dynamics method to simulate a two component mixture of artificial swimmers, termed as Taylor lines, which differ from each other only in the propulsion speed. The analysis reveals that a contribution of slower swimmers towards clustering, on average, is much larger as compared to the faster ones. We notice distinctive self-organizing dynamics, depending on the percentage difference in the speed of the two kinds. If this difference is large, the faster ones fragment the clusters of the slower ones in order to reach the boundary and form segregated clusters. Contrarily, when it is small, both kinds mix together at first, the faster ones usually leading the cluster and then gradually the slower ones slide out thereby also leading to segregation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available