4.8 Article

Organic Carbon/Water and Dissolved Organic Carbon/Water Partitioning of Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 49, Issue 20, Pages 12161-12168

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.5b02483

Keywords

-

Funding

  1. Swedish Research Council FORMAS [2011-484]

Ask authors/readers for more resources

The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (K-OC) and between Aldrich humic acid dissolved organic carbon and water (K-DOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model. The measured log K-OC of octamethylcydotetrasiloxane (D-4), decamethylcyclopentasiloxane (D-5), and dodecamethylcydohexasiloxane (D-6) were 5.06, 6.12, and 7.07, and log K-DOC were 5.05, 6.13, and 6.79. To our knowledge, our measurements for K-OC of D-6 and K-DOC of D-4 and D-6 are the first reported. Polyparameter linear free energy relationships (PP-LFERs) derived from training sets of empirical data that did not include cVMS generally did not predict our measured partition ratios of cVMS accurately (root-mean-squared-error (RMSE) for logK(OC) 0.76 and for logK(DOC) 0.73). We constructed new PP-LFERs that accurately describe partition ratios for the cVMS as well as for other chemicals by including our new measurements in the existing training sets (logK(OC) RMSEcVMS: 0.09, logk(DOC) RMSEcVMS: 0.12). The PP-LFERs we have developed here should be further evaluated and perhaps recalibrated when experimental data for other siloxanes become available.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available